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A GENERALIZED CLASSOF EXPONENTIATED MOD ED
WEIBULL DISTRIBUTION WITH APPLICATIONS

Shusen Pt Broderick O. Oluyede Yugi Qiu® and Daniel Linder

Abstract In this paper, a new class fofe parameter gamrrexponentiated or
generalized modied Weibll (GEMW) distribution which includes
expmential, Rayleigh, Weibull, mofied Weibdi, exponentiated Weibull,
expmentiated exponential, exponentiated nfiedi Weibull, exponentiated
modfied exponential, gammrexponentiated exponential, gamma
exponentizdd Rayleigh, gammmodified Weibull, gammamodified
exponential, gamm®eibull, gammaRayleigh and gammexponential
distributions as special cases is proposed and studied. Mathematical properties
of this new class of distributions including moments, mekviations,
Bonferroni and Lorenz curves, distribution of order statistics and Renyi entropy
are presented. Maximum likelihood estimation technique is used to estimate the
model parameters and applications to real data sets presented in order to
illustratethe usefulness of this new class of distributions and itsrsadels.

Key words Modified Weibull distribution; statistical properties; maximum
likelihood; applications.

1. Introduction

Weibull distribution (Weibull, 1951) has exponential and Rayleighpasial submodels
and it is one of the most popular distributions for modeling lifetime data with monotone
failure rates. However, as for noamonotone failure rates, Weibull distribution does not t very
well. Recently, several mditd Weibull digributions with additional parameters have been
proposed and studied as lifetime distributions in reliability and lifetime data analysis.

Recently, several ways of generating new probability distributions from classic ones have
been developed and discussed in ttexdture on distribution theory and its applications.
Nelson (1982) stated that distributions with bathgblped failure rate are complex and,
therefore, di cult to model. The distribution grosed by Hjorth (1980) is an example.
Rajarshi and Rajarshil988) presented a revision of these distributions, and Haupt and
Schabe (1992) introduced a new lifetime model with batehdped failure rates. However,
these models are notfcient to address the various complex practical situations, so new
classes odistributions vere presented based on the madifions of the Weibull distribution
to satisfy normonotonic failure rate. For a review of these models, the reader can refer to
Pham and Lai (2007), where the authors summarized some generalizationsbafl Wei
distribution. Jones (2004) studied a family of distributions derived from the distribution of
order statistics, the begenerated family proposed by Eugene et al. (2002). Other
generaizations include: the exponeated Weibull (EW) (Gpta and Kundul1999), the
modified Weibull (MW) (Lai et al., 2003), the beta exponential (BE) (Nadarajah and Kotz,
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2006). Some reent extasions are the generalized moddfiWeibull (GMW) (Carrasco et
al., 2008), the beta modi ed Weibull (BMW) (Silva et al., 2010),Whaibull-G family
(Burguignon et al., 2014), the Ganwagponentiated Weibull distributions (GEW) (Pinho et
al., 2012) andhe McDonald exponentiated modifi Weibull (McEMW) (Merovci and
Elbatal, 2015).

Ristic and Balakrishnan (2011), provided a new fgmwildistributions whose cumulative
distribution function (cdf) were generated by equation (1). As a natural extension, in this
paper we introduce a new distribution with verpmeters, referred to as the gamma
exponentiated modi ed Weibull (GEMW) disuitibn with the aim of attracting wider
application in reliability, biology and other areas of research. This generalization contains as
special submodels severatlistributions such as the EW (Gupta and Kundu, 1999), MW,
generalized Rayleigh (GR) (KundudRekab, 2005) and a new soimdel, namely Gamma
modi ed Weibull (GMW) distributions, along with several others. Due to its exibility in
accommodating all the forms of the hazard function, the proposed GEMW distribution seems
to be an important distributicthat can be used in various problems in modeling survival data.
The GEMW distribution is not only useful for modeling bathsiliaped failure rate data but
also suitable for testing goodnesfs t of some special suimodels such as the EW (Gupta
and Kundy 1999), MW, GMW (new) and GEW distributions.

The rest of the paper is organized as follows. In Section 2; we de ne the GEMW
distribution and provide its hazard rate, reverse hazard and quantile functions. Expansions for
its probability density function (i) and some special sutbodels are presented as well. The
moments, moment generating and characteristic functions are given in section 3: Section 4 is
devoted to mean deviations about the mean and the median, Bonferroni and Lorenz curves.
Section 5 contais results on the distribution of order statistics and Renyi entropy. In section
6; estimation of the parameters of the GEMW distribution via the method of maximum
likelihood is presented. Applications are given in section 7, followed by concluding remarks
in section 8:

2. The Model
2.1 Defnition

Based on a continuous dafx) with survival function'dx) and pdff(x) and the method
proposed by Zografos and Balakrishnan (2009), Rastit Balakishnan (2011) proposed an
alternative gammagenerator defiedby the cdf and pdf:

() = 1— — /_MHH'F) S-le—tq R 6> 0
Gloe) =1 — —— e, e R4 =0,
I'(3) Jo - (1)

and

1 S,
glz) = ——[—log F(x)]" = f(x).
I'(a) @)
respectively. FGr & N . , equation (2) is the pdf of tm¥ lower record value of a sequence
of i.i.d. variables fronma population with densitf(x).
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Consider the exponentiated moddi Weibull (EMW) (Carrasco etl., 2008) distribution
with cdf given by

;T A'r ix v
Flo) =1 - (D' ®
and pdf
o fryFl ok A gk Az
el = (K ir (2 :—-.I]lr +da 1— :—-.I]l e rt—]l
flz) =k + ’}}.(A) f [1— ] @)

wherechh . mand; 1t By replacingF(X) in (1) by the EMW cdf, we obtain a new

extension of EMW distribution, c&ltl the gammaxponentiated moded Weibull (GEMW)

distribution. Ingrting (3) in (1) yields the GEMW cdf (for> 0)
“,-{6. — lﬂg[l — f:—-.’f:,a-r h-]rk}
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Figure 1: Graphs of GEMW pdf with varying valuesjondr ; respectively
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Figure 2: Graphs of GEMW pdf with varying values)aind} ; respectively
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The pdf corresponding to (5) is given by

0 'Q Qads the incomplete gamma function.
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forchth h.  mand’ 1t A random variable X having density (6) is denotecKbGEM
W1 h i A . Several possible shapes of the GEMW pdf are shioviiigure 1, 2 and 3.
Note that the parametersontrols the scale of the distributidf) and, controls its shape,

I is a sort of accelerating factor in the imperfection time that works as a factor of fragility in
the survival of the individual &sme increases.
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Figure 3: Graph of GEMW pdf when only the parameter k changes

2.2 Hazard rate, reverse hazard and quantile functions

In this section, we provide the hazard ra¢eerse hazard and quantile ftions of the
GEMW distribution.

2.2.1 Hazad rate and reverse hazard functions

Note that ifX is a continuous random variable with @@fx); and pdfg(x); then the
failure of hazard rate function (hrf), reverse hazard function (rhf) and mean residual life
functions are given bR & r—ﬁ’r w —;and @ _ "d6Qados ,
respectively. The function® wh & , and "®¢ are equivalent. (Shaked and

Shanthikumar, 1994). The hazard rate and reverse hazarduratgois of GEMW
distribution are given by
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Figure 4: Graphs of GEMW hazard function

Plots of hrf are presented in Figure 4. Thesstspshow various shapes inciog
monotonically decreasing, monotonically increasing, unimodal zettitub shapes for
different combinations of the values of thegmaeters. This flexibity makes the GEMW hrf
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suitable for monotonic and nanonotonic empirical hazard behaviors which are more likely
to be tle case in real life situations.
The density ath hazard functions can exhibit diffent behavior depending on the values
of the parameters when chosen to be positive, as shown in these plots. However, it is hard to
analyze the shape of both the density and hazard function due to their complicated forms

2.2.2 Quantile function

We can know more about this model by expanding the density function and analyzing the
quantile function. The GEMW quntile function can be obtainég invertingd®» p 0,
where'Ow 06 and

- ek Ar.
o f}-‘{—log_l _ E_—f;) e _Q.Té} )
Glr) = ) . (7)

Let z = 4 1[(1 — u)['(8), 8], then one can get,

log(log(1 — e™ %)) + klog(x) + klog(\) + Bz =0, (8)

and the inverse incomplete gamma functiomlmaimplemented by using nuritad methods.
Consequently, random number can be generated based on (8).

2.3 Expansion of the GEMW Density Function

Corsider the series| TgC @ B — ,wherem ® p,andU Q ~ . The

GEMW distribution can be written as
b

I o I borest e ol G [

o0
i=0 r=>0

Note that:
o0 i1 © o0 8 .
) 'yl )t’—l - |: 9 .y :|dl—l
(_ i+ 1 - 3"ﬂ’ZHQ
i=0 s=0
0 5—1 o0 .
a—1 - T m
- oE |
20 "
Next, let(y —,thenB OO B ®h & where
b = (sa0) 1Y [-m.(z +1) - 5} arbs i m (11)
=1

ad®p & .Now,we can write the GEMW pdf as
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o]

g( Z Z (0 - 1) (C:: : 1) = ”E-:s—;_n +Of1.ﬂ‘|, (12)

m=0s,r=0

whereQ w QM h.  denotes the pdf of the modified Weibull distribution (Lai et

al., 2003) with_ ——— 1. To simplify the notation, one can define
GAR ~ <4 asanindex set and the weights ———  foro
. Therefore, the GEMW pdf can be written as
g(x) =Y wofuw (). (13)

vel

Equation (13) shows that the GEMW density is indeed a linear oatidmh of modified
Weibull distribution. Hence, most of its mathematical properties can be immediately obtained
from those of the modified Weibull distribution. For the convergence of equations (12) and
(13), as well elsewhere in this paper, note thatfor

O S 51
[—log(1—y))°~! = {y(lwgs‘izﬂ

so that

._:-., yﬁ; 6—1 J'U. 5—1 L '3”‘-’_ ys k
[Iﬂ”zﬁwzl :Z( k )3" (Zs+2)

k=0
isconvergent if and only it B — pl wN Tip ,sincem U Q ~
p,0 T hQ mhandf 1. Now ,m OB — ——— p, So we must have

m ——— p p. This leads top U A@Hc U, and on the other hd

Agbu B X p U. Thus , we have the system of inequalitigs U
A@bc UandA @DBU p U, whichis statisfied UN TiTe w @. Y

2.4 Some Submodels

In this section, some strhodels of the GEMW distribution are presentéde GEMW
distribution contains several special subdels that are well known distributions. When
0, we obtain

. _ ee NO-L /L L ok

which is the gammaxponentiated Weibull (GEW) distribution, given by Pinho et al. (2012).
The GEW distribution has several special cases submodels. For instance, = 1 leads to
the exponentiated Weibull (EW) distribution (Gupta and Kundu, 2001), with a pdf:
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ko [« k-1 xak, PPV
Q(LL’]ZT by e (%) 1—e (%) [=-1.

Wheny Q p,EW distribution has the exponential distribution (Gupta and Kundu, 2001)
as a submodel with a pdf

glx) = %E_[%J.

By settingk = 1; EW distribution leads to the exponentiated exponential (EE) with a pdf
X =

glx) = XE_%(]_ — e_k)a_l,

Let| p, from EW distribution we can also obtain Weibull distribution (Weibull, 1951)
whose pdf is given by
Efz\F! Tk
N — —(3)
Ir)=—| — e ‘Al
g(r) = ( )\)
Whenf mh pand m™ Q p,the gammaVeibull (GW) (Pinhoet al., 2012)

with a pdf
k T k—1 (£} _(zyk 5—1
g(l)_ )\F{t’jj (X) e \x/ (—10g[1_€ Ly ])

and gammaexponential (GE) (Pinho et al., 2012) distributions with a pdf

are obtained, respectively. The gamexponentiated exponential (GEHlistri-bution
follows fromf  mmandk = 1, whose pdf is given by

Ck T T 6—1 T —Ta—1
g(r) = }\P(é)(_lﬁg'l_ﬁ by ) e X1 —e X"

Moreover, wheri THQ ¢®£1Q TQ ¢h  pwe obtain gammaxponentiated
Rayleigh (GER) (Ristic and Balakrishnan, 2011) distribution with a pdf

2ra® _(z2 L (Z)270— a2y 0-1
glz) = AQF{CF]E (x) 1—e LA]] l(—log[l—e (X) ])

and gamm&ayleigh (GR) distribution (Ristic and Balakrishnan, 2011) with a pdf

2 _(EN2 _yzy2) 0—1
g(i) = )‘Qr(d)f [)'J (_]'Og[l — € ') ])

respectively.
When 1, by setting p, we obtain the modified Weibull distriban (MW)

(Lai et al., 2003), whose pdf is given by
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! 3)e—(5)Fef™ 4B
9(z) = —g—(k + fr)e

For'Q mh pand@Q nhy | p, GEMW gives gammaxtreme value (GEV)
(Coles, 2001) and extreme value (EVp(€s, 2001) distributions, with pdfs

o) Br 3. e -1
LA ( —log[l —e™° ])

and
--d?—_.'j-.r

g(r) = Be

respetively. One can also obtain gammaodified Weibull GMW) distribution by letting
1 pin GEMW distribution, the corresponding pdf of GMW is:

Z)rel® o—1 I k-1 fxeke By 3
9(x) = AL'(4) ( - Log[l — e_{fjkfd ]) (k+ Ba) (i) E_tﬂ"f' 1 B

which is a new distriltion.

3. Moments, moment generating and characteristic functions

In this section, the momentmoment generating function and characteristic function of
the GEMW distribution are presented. lZ&be a random variable with a density function
g(z) as in equation (6) and X be @andom variable with mod#id Weibull density function

N w.
3.1 Moments

As mention earlier in section 2.3, the GEMi&tribution is a linear combination of
modified Weibull distribution. Recall the general results for the-begdi ed Weibull (BMW)
distribution giverby Nadarajah et al. (2011). Lét 6 0 wcduh b b with pdf

y—1fn, A

ﬂ'-y. {f-\ll _I_ )\y)f u _ v Ay- 1 b v Ay
— ] — e w’e™a ay’e™ 50

f[:y) B(ﬂb) [ € ] c y

wherecfchy mandrfi 1. Note that'Q @ is a submodel of BMW distribution
(Silva et al., 2010) with the parameters:

e sdd
a=b=1,‘_r'=k;)\=.3fﬂ'=’+m;;q+

Using the moments of BMW distribution, the moments of the MW distribution (Nadarajah et
al., 2011) arexs follow:

B(XY) = 3 wili (5,1, (14)
=0
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whereO® W AT @ given by

' r+m+s+4 Tty
Il (_'}; f) = w;l mz_:l Ay, =+ Ay X [T(l + j]]
<D (T ), (15)
(-1 ﬂ
¥ : AT 16
T T(1—5)(144)5" (16)
and
—1yPt+la—2g3-1
0= DT i -
(G — 1)k
respectively.

There is also another relatively simpler form of the tth moment by using the Lambert W

(.) function. We can get the following equation 1ore ,
(s ]

L. =tk Y T D D).

?]1’1ln[r+n;+s+<5(l_|_j)] k

n=1

Substituthg equation (18) in (14) gives a representation for moments of the MW (Lai et al.,
2003) distribution in a relatively concise form with only a doublj/n'ine series Thus the
thenE(Z) can be expressed in terms of thmoments of the same baseline MW dlstrlbutlon
which is

E(Z") =) w.BX),

velV

where E(Xt) is defined by equation (14), and by substiti@n@ from equation (18), one

can also get another form of moments@&EMW distribution.

Conditional expectations are very useful for lifetime models, so it is very important to know
%0 I, which is given by:

L F(a‘
B X0 = e O s S G, 09

where

' r+m+s+4 -ty

Lt = Z Z Ay = Ay X [T(I‘FJJ L
my=1 my=1

xf‘(mhL"'ert 41 r+m+s+4

- T+ )e), (20)
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and0 & Qaregienby (16), (17)and o . ® Q Qw
Similarly, a relatively simpler representation fa&rd S0 @ can be obtained from
equation (18),

. (=B)"n"tn—-1)---(n—t+1)
2.0 = Z nlkn [ (1 4 )]E
xr(i+ W(Hﬁf)_ (21)

3.2 Moment generating and characteristic functions

of X are given byu o © Q AT %0 '0OQ | respectively, wher® W p. Note
thatd o AT %0 canbe expresséso B —0® and%o6 B —0& ,

whereO @ is the giren by equation (14Nothing that,Qw can be expressed as an infinite
weighted sum, we have

M(t) =) w,Myw(t), (22)
veV
Whereb 0 is the moment generating functiontbé MW distribution, which is,

oo oo 1, _ n—1
Myw (t) = —tk ZZ —D)"w 313 tk) ]._(% + 1).

=0 n0 k" r“““”(lﬂ)'*

The corresponding characteristic function is

with

, . = L (=1)" ;,;j(-n-ﬁ’—tk]”_l n
Buw () = =itk 33 nlkn [P0 (1 4 )] F(E +1)

wherel is given by equation (16).

4. Mean deviaions, Bonferroni and Lorenz curves

In this section, mean deviations about the mean and the median, Bonferroni and Lorenz
curves of the GEMW distribution are represented.

4.1 Mean deviations

Letc¥ "O00 & h i AM_, the mean deviation about the mean and the mean deviation
about the median are defined by ® | I 0SQwWQ@ and] ® | W
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0 SQw'Q prespectively, wherg %8 andd 0 'Q'Q"Qd denotes the mediahe
measures & AT1A @ can be calculated using the relationships

51(X) = G ~2u+2 [ sgla)ds, (23)

Jp
and
OO

0a(X) = 2[{ rg(z)dr — p. (24)

T

Recall that Qw B.+]1 Q ® , so that, @ @®Qw B.]1 O and
WBDQw B 1 O, where

-~ ) ' e ' P

'=ZZ&';ﬂm .'—l—m—i—s—I— (l-l- ” “‘F(%—l—l,;—’_m)‘tq—’_o(l—i—j]g),
j=0 m=1

Zzuja?n wu N F(%+1,Wﬂz\$(l+j‘]ﬂ),
j=0m=1

and AT & aregiven by equation (16) and (17), respectivéljollows that
S1(X) =2uG(p) —2n+2 Y wols, and 8(X) =2 w,ly—
veV veV

4.2 Bonferroni and Lorenz Curves

In this section, some inequality measures, namely Bonferroni and Lorenz curves are
presented. These quantities have been applied to a wide vaffietigefsuch as studying of
income and propertyiieconomics, reliability, demogphy, insurance and medicine.

Foréy "000 ¢ h i Ath_, they are defined by
1 q

&m=aiomchmdmm=iAﬂmm@; (25)

respectively, where 'O ® andN "O 1) is obtained from equation (8).
Using similar methods in deriving the moments, we can show that

/‘ @z =33 w50,

vel =0
where

= T+ 4] _m
IG) = 3 an [ 2 (14 )] Fy (41, (14 5)a),

m=1
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and AT & are given by equation (16hd (17), respectivelyje can reduce the curves in
equation (25) to

B(p ZZU‘. wils(7) and L(p) ZZRLWJIP

1L1 4=0 LLL 7=0
respectively.

5. Order Statistics and Renyi Entropy

In this section, the distribution of tlité order statistic and Renyi entropy for the GEMW
distribution are presented.

5.1 Order Statfistics

Consider® 8 &d i.i.d random variables distributed according to (2). The pdf of the
ith order statistic, sayy , is given by
nlg(x) — . — . i
G(x)]" 'l - G(x)]" .
= Dim — @ -G

Gin (17) =

Using the binomial theorem, the pdfiE?forder statistic can be written as

(i— (n Z( 1)J< ){ y[— fog(};) 5]}n+j 1.

Applying the power series (see Gradshtayld Ryzhik, 2000)

Gi:n (Ir) =

oo —ljm _i,'m+5

~x, ) = _ X

/(,9) Z (m 4 d)m! "’
m=0

we have

i—1 /. ;
T (—1) o B (-y19(n+i—i)
Gin(x) = (i — 1) (ﬂ —)! E . ( ] ) ]n+l 2[ log F(.[)] J

J=

(=)™ [ log F(x)]™ "
8 {Z (m + 8)m! } '

m=I()

Let® and use the result on a power series raised to a positive integer, as in
section 2.3, to write
oo n+j—i o
{ Z Cm|— logF(;r)_m} = Z At j—i| — log F(x)]™,
m=0 m=0
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where  Qj o and Q j o B & QM a
dwQ . ReplacingQw by the right hand side of (2), we obtain

i—1 oo i
Qi:n(I} = (?__1)r 1—1?)’{22( )

=0 m=0

(_ljjdm__n—kj—i . . . .
:r(d):h—j—i—l ]'—(5[:?1 TJ]—1+ 1) + 'm')g{f{r?—j—i—lj—ﬂi(f) : (Qb)
where "Q w denotes the GEMW with. 1 ¢ Q Qp a .

ConsequentlyQy @ is a linear combination of modéd Weibul densities. Thigs very
useful result since we can derive properties of the order statistics of the Gligtibution
from those of modigd Weibull distribution. For instance, we can obtain

l 1 oo oo 1
t _ erm,ﬂ— j—i
P = e o L 2 () s

veV j=0 m=0 =0
x T@m+j—i+1)+m)i(l,1), (27)

X

where’O & is given by equation (15). These momeats used in areas such as quality
control, reliability and insurance, for prediction of future failure times from a set of past
failures.

5.2 Renyi Entropy

Renyi entropy is defined by
In(v) = (1=v)"log | [

of — O

o0

g"(x)dz|.

whereb T1andb p. Raising equation (6) to the power and usingdinglar expansion
in section 2, we obtain

I AR = (CES VAW CES VAN
[g(x)]” = TV (3) > ( m )( r )( f>

m,s,rli=0

y — 1) p—Dk-D)++
7! dv+m-t+s+r

1 I k-1 r\JL Bz
x5 ()\ ) Bz (L 4 Bur)el ,

) (_1) bqn;.ljf E.IILIJ —l— ]_(

(28)
where_,: —— mand® is given by equation (11)Consequently Renyi
entropy for the GEMW distribution reduces to:
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wn - vl £ 2T

ATV (6)
( m,s,r,l,i,j=0n=1

(1) wibsml(v —1)(k—1) + 1+ 'i],B'!Hk”“‘lF(% . 1)
{b’ _ ljé(_k)[(v—lj(k—lj—l+i] {_l)nnn—[(;u—l)(k_lj_g_;_i](n _ 1) o (-11 Cta 1)
n.!?-.-ﬂ“*“)%””(l —I—j)]% ]

X

(v +m + s+ )i
(29)

wherg AT & are given by equation (16hd (17),and3s A w Q Qw

6. Estimation of Parameters

Leté¥ "O00 o h i Ath_ ands 1 h i ARG be the parameter vectofhe log
likelihood for a single observationof X is given by
£=0A) = (5—1)log(—alog(l — e~ X)*™)) _1og[['(8)] + log(k + Bz)

+log(a) — Elog(A) + (kK — 1) log(x) + Bx

_(g)kﬁ'ﬁx +(a—1)log (1 - g‘{f}ke”). (30)
The first derivative of théog-likelihood function with respect to the parameters
> 1 h R AG are given by
or ) :
e = o tloell-e T (31)
or (0—1 --(I)ke—(ﬁ}keﬂuax L=
% (log(1 —et (X)*er= N1 —e 3 ke h) k+ Bx
: —(Z)kefr L@
ok g wla = D(§)kPre ) -
S (X) ezt | —CFe . (32)
ﬁ — (1 —8)kz*AF1e —(5)Fef 4Bz - E
(s (log(l . e_(%)kgﬁr])(l . E_{ Yee —I_-r) A
kakePT  k(a —1)rkefr—(3)"e™ N
)\k+l + Alib“‘l(l e X‘]‘I‘ -.'jr) ’ ( )
ot _ (6 = 1)(5)*log(%) 1 )
Ok (log(l — e () (1 — e~ (D)) Y Eipr log(A) + log(x)
T iy k T . (O _ 1)( )klog T (A]kéﬁr—ﬁx
~log (3) (X) [l“’g (X)]EB + E*))k - (34)
1 _ E'_ X e.._‘f!

and
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o _ _gpermy) _ T(O)
o I'(9)
The total loglikelihood function based on a random sample of n
observationsm oo 8 8 & drawn from the GEMW distribution is given i 0 3
B Jba,where/b3 HQ pltiB 8 A is given by equation (30Xhe equations obtained
by setting the above partial derivatives to zero are not in closed form and the values of the
parameters it f A iy must be found by using iterative metiso The maximum likelihood
estimates of the parameters, denoted-liy obtained by solving the nonlinear equation

ELIELIRLT LR T, using a numerical method such as NewRaphson procede.

We maximize the likelihood function using NLmixed in SAS as well as the function nim
in R (2011). These functions were applied and executed for wide range of initial values. This
process often redslor lead to more than one nraxm, however, in thescases, we take the
MLEs corresponding to the largest value of the maxima. Bwacases, no maximum was
identified for the selected initial values. In these cases, a new initial value was tried in order
to obtain a maximum.

The issues dealing with thgistence and uniqueness of the MLEs are-tiedical interest
and has been studied by several authors for di erent distributions including Seregin (2010),
Santos Silva and Tenreyro (2010), Zhou (2009), and Xia et al. (2009). We hope to investigate
this prdolem or issue for the GEMW distribution in the future.

Leta JIfFERR be the maximum likelihood estimate ®f AR Under
the usual regularity conditions and that the parameters are in théombd the parameter
space, but not on the boundary, (Ferguson, 1996) we have

MEY Y o0 mhio ¥ |, where QY is the expected Fisher information matrix. The
asymptotic behavior is still valid {DY is replaced by the observed information matrix
evaluated & , thatis JY). Elements of the observed information matrix gieen in the
Appendix. The multivariate normal distributiéon 0 Y, where the mean vectur= (0,

0, 0, 0, OT , can be used to construct confidence intervals and confidence regions for the
individual model parameters and for the suaViand hazard rate functions. That is, the
appr oxi man%twadsidedl Cobfidence intervals far,  [3 anddlare @iven by:

log(—alog(l —e i (35)

— —_—

G+ Zg\Iad(A), BxZa\[I53(A), k=xZg\/I5H(A), X£Zy/I(A),

and @ 'O VY, respectively, wher® ¥ ,0 Y ,"0 ¥ ,'0 ¥ andO VY arethe

diagonal elements &0 Y ¢ "0 , andd® is the upper— percentile od a standard

normal distribution.

The maximum likelihood estimates (MLEs) of the GEMW parameaters [(0anddA
are computed by maximizing the objective function via the subroutine NLmixed in SAS. The
estimated values of the parameters (standard erparenthesis)2loglikelihood statistic,
Akaike Information CriterionAIC =2 p — 2, Bayesiarinjormation CriterionBIC = p

| n( n) ,andZonkisiefhka)ke Information CriterionAICC = AIC +¢

L = L(Y) is the value of the likelihood function evaluated at the parameter estimatésen is

, Where
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number of observations, ampdis the number of estimated parameters, and Kolmogorov
Smirnov (KS) statistic are presented in Tables 2 and 3.

In order to compare the models, we use the criteria stated above. Note that for the value
of the loglikelihood function at its maximuni(Y )), larger value is good and preferred, and
for the KolmogorovSmirnov test statistic (5), smallervalue is preferred. GEMW
distribution is fitted to the data sets and these fits are compared to the fits using the
Exponential, Weibull, EE, GE, GEE, GW, EWMW, GEW and GMW distributions.

We can use the likelihood ratio (LR) test to compare the fit of the GEMW distribution
with its submodels for a given data set. For example, todesti— 1, the LR statistic is

1 ca&d|h B a & | h AQplp , wherey iy B8 andy, are the unrestricted

estimates, andfi , andQare the restrictedstimates. The LR test rejects the null hypothesis
if5 ?,where? denotet he upper 10 0%diribptioni witit 2 degieestoh e X
freedom.

7. Applications

In this section, we present two examples to illustrate the flexibility of the GEMW
distribution and its suimodels for data modeling.

The first data consists of the lifetimesf 50 devices given by Aarset (1987). It is
known to lave a bathtulshaped hazard function thus been widely studied. The dataset are:
0.102101.01.01.01.02.03.06.07.011.012.018BM18.0 18.0 18.0 21.0 32.0 36.0
40.0 45.0 46.0 47.0 50.0 55.0 60.0 63.0 63.0 67.0 67.0 67.0 72.0 75.0 79.0.882.0
83.0 84.0 84.0 84.0 85.0 85.0 85.0 85.0 &&M 86.0.

The second data gives failure and running times of a sample of n = 30 devices given by
Meeker and Escobar (1998). This data has a bathtub shaped hazard function and are given by:
2 10 13 23 228 30 65 80 88 106 143 147 173 181 245 247 261 266 275 293 300 300
300 300 300 300 300 300.

Some descriptive statistics of these two data sets are given in Table 1.

Tablel: GEMW Descriptive Stistics of Application Dat&ets

Data n Mean Media Minimu Maximu  Varianc SD
Aarset 50 45.686 48.5 0.1 86.0 1078.2 32.8352
Meeke 30 177.03 196.5 2 300 13223 114.991

Estimates of the parameters of GEMW digitibn (standard error in pargmeses),
Akaike Information Criterion (AIC), Consistent Akaiki@formation Crterion (AICC),
Bayesian Information Criterion (BIC) and KolmogofBwmirnov (KS) statistic are given in
Table 2 for the first data set and in Table 3 for the second data set. The estimated covariance
matrix for the GEMW distribution (Aarset Catis given by
., CTX TTEPCTT  TEHUXU oBpwt  (BUWW -,

v TTIEPPCTT TIBUCTTT TBUUTo0  TEUWIp  T@UTUO-
1 THUXV  TIBUTOO0 TBUUICOX T@UPCOoC  TBUUo ~

1 o®pwrt  TBUYPIP TBUPCOC TBPPOW mguuy
U c®uww T8UT Lo urro TerTy  T8rTcar Y
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The 95% asymptotic confidence intervals foe IGEMW model (Aarset Data) @ameters

are:UN (0.01279, 0.07463) ¥ (0.05552, 0.1244)jN (0.1628, 0.5915%N (3.9043, 5.0574),
andaw (317.7468, 374.2732), respectively.
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Table2: GEMW Estimation for Aarsetlata

Model [ b & k i -2LogLikeihood AIC BIC AICC KS SS

Boonenid 1 0 456858 1 1 1822 4842 4861 4843 01911 05190
: . (64609 - -

Webul 1 0 49125 09490 1 1820 4860 4898 4863 01928 0.5289
: o (69450) (01199

EE 0% 0 53479 1 1 1800 4840 4878 4842 02042 05634
UK 1 K ) NP

GE L 0 70288 1 13798 4816 4856 480.4 485.8 0.1981 05469
: N R 1)

GEE 0348 0 70083 1 01403 4772 4832 4889 4837 01911 0.4920
000 - (18173 - (0150)

GW 1 0 83038 10507 15605 4815 4875 4932 488.0 01974 05492
: o (12998) (01425 (0.3660)
EW 0L 0 91008 5417 1 4570 4630 4687 4653 0.2092 05679

00188 - (65188 (0163
MWL 00BR 248720 03548 1 4543 4603 466.0 4608 01337 0.2662

0002639 (L107)  (005343)
GEW 008204 0 828604 55040 06182 4518 4587 4663 450.6 0353 0.2048
0007) - (205673 (0.1289) (00145)
GMW 1 0065 12310 03955 10017 4545 4625 4701 4634 01418 02773
(0003056) (0.000125) (0.1584) (04751)
GEMW 004371 0099 34601 44809 03771 4343 4443 4539 4457 0.1292 0.1497
00153) (00714) (14452) (0.2870) (0.1067)
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Table3: GEMW Estimation for Meeker and Escolukta

Model U b ? K I 2Lloglkeihood AIC BIC AICC KS  SS
Exponential 1 0 25 1 1 3568 3588 3602 3590 02061 03184
(32.0784)
Weibull 1 0 18277 12359 1 3553 3503 3620 3597 02105 0.2937
(285726) (0.2029)
EE 11280 0 16055 1 1 3566 3606 3633 3610 02067 03055
(0.2710) (36.5670)
GE 1 0 11999 1 07315 3565 3605 3632 3610 02047 03015
(40.4183) (05253)
GEE 11370 0 7000 1 L0471 3566 3626 3667 3635 02042 0.299
(0.2004) (7.8173) (0.1521)
GW 1 0 33000 14201 17402 3549 3609 3650 3619 02145 03033
(6.8530) (0.4399) (L4851)
EW 01286 0 3253 68504 1 3417 3477 3518 3487 02199 02807
(001843) (65188)  (0.1637)
MW 1 0006861 505505 04662 1 339 3499 3540 3508 01766 0.989
(0001021) (0.00001)  (0.09065)
GEW 0105 0 32947 71874 08469 309 3489 3543 3505 01784 0752
(0.04242) (10.3241) (0.4325) (0.2146)
GMW 1 0005080 1786.00 05343  0.9143 341 3521 3576 3538 01860 02054
: (0003056) (0.000125) (0.1584) (0.4751)
GEMW 004764 00338 156701 55337 04426 3301 3400 3469 3427 01587 0.446
(002313)  (0002379) (0.000086) (0.1088) (0.1846)
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Expected Probability
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Figure 5: Fitted pdf and observed probabilities for Aarset data

XP 0D @ mEppyYr
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1 p&O X
e

P& X

PO ¢ LY@ Y,
TBITITMPCBITMIM ST TITTTT G W

U Y@ Y TBIMNMNQ W NANIMInNnouwhp vy ¢ YV

The estimatedavariance matrix for the GEMW distribution (Meeker &gstobar Data)
is given by
I&o OYw xXpoto

The 95% asymptotic confidence intervals for the GEMW model (Meeker and Escobar Data)

parameters aréJn (0.000328, 0.09495)N (0.02917, 0.03890)jN (0.06499, 0.8203) M

(5.3111, 5.7562), andiN (1567.009871, 1567.010129¢spectively.
Plots of the fitted densities, the histogram of these data and probability plots are presented

in Figure 5 and Figure 6. For the probability plot, we plotted

w N hh®s

against—88 hQ pltiB R, wherew aretheordered values of the observed data.
For the Aarset data, the LR test statistic of the hypothésdSEW against.: GEMW

andHo: GMW againstH.:

GE MW ;1 176 with pvalue=2.87 x 10°%andw, = 20.2
with p-value= 6.98 x 10° Therefore, we rejedtly in favor of Hy, and conclude that the

GEMW distribution is a significant better than the GEW and GMW distributions. Moreover,

the values of the statistics AIC, AICC, BIC and KS show that modM@E i s a

for this dataAlso, the value of SS for the GEMW distribution is the smallest.
Similarly, we can also conduct the LR test for the Meeker and Escobar data

better?”

1
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Expected Prabability
=
i

N
=L

Exponential(S5=03184)
— — —Weibull(55=0.2937)
EE(55=0.3055)
—— GE(55=0.3015)
——— GEE(35=0.2995)
GW(SS=0.3033)
— — — EWW(S5=0.2807)
MW(SS=0.1389)
—— GEW(3S=0.1752)
— — — GMW{SS=02054)
+  GEMW(SE=0.1445)
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Fitted PDF

— GE
GEE

0 50 100

Meeker and Escobar data

Observed Probability (Meeker and Escobar data)

Figure 6: Fitted pdf and observed probabilities for Meeker and Escobar data

for the hypotheseldo: GEW againsH. GEMW andHo: GMW againsH. GEMW. The LR
test statistic ofl0.8witlepsatue=0y p 0 1 Srdavitspraddue=e ©
1.83 x 104 which implies that we should rejekl in favor of Ha and conclud that the
GEMW distribution is a significant better fit for the Meeker and Escobar data. In addition,
the values of the statistics AIC, AICC, BIC and KS clearly show that model GEMW is a
“bett er ” datai Rurthérmore, thehvalle of SS for the GEMistribution is the
smallest.

8. Concluding Remarks

A new class of distributions called the gamexgonentiated or generalized modified
Weibull (GEMW) distribution is proposed and studied. The GEMW distribution has several
submodels such as the GEW, EW, BEEW, GE, GEE, GER, GR, MW, GEV, EV, GMW,
Weibull, Rayleigh and exponential didtitions as special cases. The density of this new
class of distributions can be expressed as a linear combination of MWy denstions. The
GEMW distrbution possesses e function with flexible behavior. We also obtain closed
form expressions for the moments, distribution of order statistics and entropy. Maximum
likelihood estimation technique is used to estimate the model parameters. Finally, the GEMW
model is fitted & real data sets to illustrate the usefulness, flexibility and applicability of this
class of distributions.
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APPENDIX

Elements of the observed infortitam matrix can be readily obtained from the second and
mixed partial derivative given below:

T :Iizﬂdz

oL 2 2(5)eF e FT)
8 ~ k+pnE T EL2 o (36)
(o — lj[f}'_ﬁmzﬁx—ii]kﬂs: 25— 1}%}2::‘?2_.3;
[1- E'i%‘-]kﬂsr:lz (1— el ®" " )2(log [l - ﬂ___,_.;,h-ﬂf]:l»_a
s

- 3. T+ BT . ;xR _BE
(6 — lﬁ[fjkt—'d:f_l —el®ET 4 {i}kf.‘"gz"'""-" o })
(1— et E*"")2(log [1 —f.-'_"ijk”'ﬂz]}g .

2 x k __.‘3:.
EE‘ £ _ ﬂ;[i:l e an
Af0a  F)EFT _
ﬁ"—"{ _ T Tk Bz T 1‘{;‘_‘!’ _ l}l:li]l'k ].Dgl:'.i}fi'ﬁr
opok ~ Tkt pmE T e et T
z(0 — 1)(§)* log(§)e* =+ 8" 2(6 - 1)(5)" log(§)e"*
(1—elF)")2 (e — 1) log [1 — e~ (F)%7]
2(8 — 1)(§)* log(§)e® =~ 3™
(1— e (B (B2 _1)(log [1 — e (F15=F7])2
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e _ 1
k2 (k+ Ar)?
[f}keﬁr[r_‘? —14+({a— E[-}\'Ik Ilog [1 - E_“T] o ] log($) i

(€@ _1)log [1 — e~ (3]
_ [%}Ekejﬁ‘_[i}kesriﬁ -1+ (a— E'-f]kz'gx]' log [1 _Iﬁk ﬂz]}[l 5 ]

I:E'-"lek"az — 1) log [l - e"-'flk"gx]

— kky + kka

+

(43)
where
Ek [ijkEEﬁI—{f]*ESI{a -1+ [Q —_ E.I_'f]kz,ﬂ::} IOE [1 _ E_[_i_-:lkc_ﬂz] f y
a (1— e (B (B _q)(log [1 — e~ (F)7])2 (44)
kekes
e j - 45
T (T Dlog[1- e B (45)
@) log(§)e# B (w = D) o
kkz;, = L (= } log [I}

~(F R oy D) log [1 - e BT (D) log(F). (46)

(i )

DEIP (47)

where
+R|:)L]|k 3_-:+'\;'J.']Jlr Az }l:)l.:l ].D’D' []_ — E_\'J.'] e? ] + )I-11_ IOE [1 _ E—I_E_y'-;':lkc-ﬂz])?
(48)
A, = 1-2e®0T 4 2D _ ety +k}{3}"
_{k-'—I}Q(Ejkesr+{ﬂ!+1}[ﬂ,+1}{ }k Ar+ [_I-:Ik E|:|.'
+k(1 = ) (§) =B, (49)
Az = M 1) log [1 — (B, (50)
80 Ay

TEOX A (51)

where
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2 T T —(ZykaAx
Mo = (5= D) e log(3) + (6 — 1™ () log [1 — e~ %]
. |.z:|k=,5_1: : . {I]kESI E k 'g-J___[I':,kES:r i
x(l ex +k(1—e% +I::A}E' x ]log(ij)
+[|D‘5 [1 _ E—I.qu]kzngz] }E}lk]-[ X
(52)
Mg = (@F 11— BT [i}keﬂ"*{%’k"h - ﬂ[i}keﬂl}
'Hv":;:'k 15’5{;}6'51 [u + 2B (a4 lllf'-vzr]"z'gx]
) = kc.i:
+h(5)* log(§)e™ (a — 1)(3) e+ H) (53)
and
Mz = AP 1) (log [1 — 3" )2, (54)
6% _ (5)"log($) | (55)
B4 (log(1 — e—(F)kaB= (1 — E—{-zg]“zﬂ-‘}
8¢ D S e i »
OIS (log(l — e B * P ))(1 — e~ (3)5eP7) (56)
2 r 2 " T
6% _ (I"(8))* — T"(8)(5) (57

852 r2(5)
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