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Abstract We introduce a new class of continuous distributions calledKthe
maraswamytransmuteeG family which extends the transmuted clasfi = by

Shaw and Buckley (2007). Some special models of the new family are provided.
Some of its mathematical properti@scluding exgicit expressions for the
ordinary and incomplete moments, generating function, Rényi and Shannon
entropies, order statistics and probability weighted moments are derived. The
maximum likelihood is used for estitirag the model parameters. THexibility

of the generated family is illustrated by means of two applications to real data sets.
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1. Introduction

The interest in developing moresKible statistical distributions remains strong nowadays.
Many generalized distributions have been developed over the past decades for modeling data in
several areas such as biological studies, environmentahces, ecomuics, engineering,
finance and medical sciences.dgetly, there hasden an increased interest in déig new
generated families ofinivariate continuous distributions by introducing additional shape
parameters to the baseline model. One example is dtegénerated family proposed by
Eugene et al. (2002). Another example is the generalized trans@uf@aily ddinned by
Nofal et al. (2015). For more details about the recent development of generalized statistical
distributions, we refer the reader tozAhtreh et al. (2013) and Lee et al. (2013). However, in
many applied areas, there is a clear need for extghaims of the classical models

The generated distributions have attracted several statisticians to develop new models
because the computationahd analytical facilities available in most symbolic computation
software platforms. Several mathematical properties of the extended distributions may be easily
explored using mixture forms of exponentiatedexpG for short) distributions.

Consider a bseline cumulative distribution function (cd€) oIfeeand prolability density
function (pdf)’QoITke with a parameter vectdé; where%o %o %o 6o 8 . Then, the
cdf and pdf of théransmuted clasgTC) of distributions are defed by

Gz A ¢)=H(z¢p) 1+ A - AH (x; )] (1)
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and
glz A @) =h(z;¢)[1 + A —2)\H (z; ¢)], (2)
respectively
Note that the TC is a mixture of the baseline and@xgistributions, the last one with
power parameter equal to two. Bor T, equation (2) gives the baseline distribution. Further
details can be found in Shaw and Buckley (2007).
Inthispagr , we de..ne and study a new family of dis
parametersn equation (1) to provide moreeRibility to the generated family. In fact, based on
the Kumaraswamgeneralized (KWG) class pioneered by Cordeiro and de Castod1®, we
construct a new generator-called the Kumaraswamy transmu@dKw-TG) family and give
a comprehessive description of some of its mathematical properties. We hope that the new
model will attract wider applications in reliability, engineeringl ather areas of research.
For an arbitrary baseline cdf @, Cordeiro and de Castro (2011)fided the KwG
generator by the cdf and pdf given by
F(zab)=1-[1-G(z)" (3)
and
flz:a,b) =abg(z) G (2)"" [1-G ()", (4)
respectively, wherQw 'Q"Q@o 7Q @nda andb are two additional positive shape parameters.
Clearly, fora = b = 1, we obtain the baseline distribution. The additional parametansi b
aim to govern skewness and tail weight of the generated distribution. An attractive feature of
this family is thata andb can df ord greater control over the weights in both tails and in the
center of the distribution.
The rest of the paper is outl i nEGfamdysandf ol | ows .
provide some special models. In Section 3, we derive aussful representation for the Kw
TG density function. We obtain in Section 4 some general mathematical properties of the
proposed family including ordary and incomplete moments, mean deviations, moment
generating function (mgf), Rényi, Shannon anrdnfopies, order statistics and their moments
and probability weighted moments (PWMs). Four special models of this family are presented in
Section 5 corresponding to the baseline exponential, powerlodagiic and Burr X
distributions. Maximum likelihood estation of the model parameters is investigated in
Section 6. In Section 7, we provide a simulation study to test the performance of the maximum
likelihood method in estimating the parameters of the Kumaraswamy transexpeaential
(Kw-TE) model and pedim two applications to real data sets to illustrate the potentiality of
the new family. Finally, some concluding remarks are presented in Section 8.

2. The Kw-TG family

In this section, we generalize the TC by incorporating two additiorgdesparameter® t
yield a more #xible generator. Then, the cdf of the K family is defned by

Fl@)=1-{1- [[1+)\}H(-x;qr))—)\H[:r;rb}gr}b. (5)
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The pdf corresponding of (5) is given by
flz) = abh(z;¢){1+X-2)\H (z;¢)}

{H (z;6)[1+ X — \H (=; ¢)]}*
b—1

{1-[0+ N H @) - 2H 07|} (6)
Henceforth, a random variab) having the density function (6) is denoteddsy+ x

4 ' 1 REFCi6o
The hazard rate function (hdf X, sayt @, is given by
r(z) = abh(z;¢) {1+A—2)\H (z;¢)}

[H (z:¢)[1 + A — \H (z: ¢)]}*
{1 - [(] + A H (z; @) _AH($;¢}2i|a}_1_

The quantile function (gf) oK, sayQ(u) ="O 06 , can be obtained binverting (5)
numerically and it is given by

2
y {14—/\—\/{14—)\) —4)\3} _
Qu)=G for A# 0,

2A

where B = [1- ( 1 —u)*"®¥a otherwisel O 0 0o . Some special cases of the new
family arelisted in Table 1.

A physical interpretation of the KWG family cdf is possible whenevex and b are
positive intgers. Consider a device made aferies ob independent components that are
connected so that eacdomponent is made of a indeplemt subcomponents in a parallel
system. If the sutsomponent lifetimes have a common cdf, then the lifetime of the device
follows the KwTG family of digributions in (5). So, the system fails if any of the b
components fail. Also, each component fdilalli of its a subcomponents fail.

Moreover, suppose a system consists lof independent subsystems functioning
independently at a given time and that eachssigtem consists of iadepemlent components
that are connected in parallel. Further, suppodeeieh component consists of two units. The
overall system wilfollow the Kw-TG model withl  p if the two units are connected in series,
whereas the overall system will followetiKkw-TG distribution with! p if the two units are

connected in parallel.
Table 1: Submodels of the KwT'G family

a & A Reduced Model Authors

a b 0 Kw-G Family Cordeiro and de Castro (2011)
1 & 0 -G Family New

a 1 0  exp-G Family Gupta et al. (1998)

1 & A GT-G Family New

a 1 A ET-G Family New

1 1 A T-C Family Shaw and Buckley (2007)

1 1 0 Hixz: ) -
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3. Mixture representation

In this section, we provide a useful representation for thel@apdf. Consider the power
series

-1 = (CD)FT(B) i
(I—Z\J —Zm[k, (:]

which holds for®s pand b > 0 real neimteger.
After applying the power series (7) to eqaat(6), we obtain

o ‘ e (=% abT (b)
glz) k=0
9 (k+1)a—1
[(1 LA H (z) — M (2) }
Gf.T,\.llk_l:'G_l
Further, we can write the last equation as
fl2)=> veg(z) G (a)*FDT (8)
k=0
wheret P DOOT A O Q
Finally, the pdf (8) can be expressed as a mixture ofErensities
flz) = Z Wi T(k41)a (2) (9)
k=0
wherg T7TQ poand & [ "W'Ow is the expG pdf with power parameter
r>0.

Thus, several mathematical properties of the K&/ family can be detemined from those
properties of the ex@® family. For example, the ordinary and incomplete moments and mgf of
X can be obtained directly from those of the-€glass. Equation (9) is the main result of this
section.

The cdf of the KWT'G family can also be expressed as a mixture of@qensities. By
integrating (9), we obtain the same mixture representation

Flz) =Y wi Mgt (2),
k=0
whereb +1.(X) the cdf of the exy&s family with power parametek 1) a.

4. Mathematical properties

The formulae derived throughout the paper can be easily handled in most symbolic
computation software platforms du@as Maple, Mathematica and Nédt because of their
ability to deal with analytic expressions of formidable size and complexity. Established explicit
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expressions to evaluate séital measures can be more @#nt than computing them directly
by numerical integration. We have noted ttheg irfinity limit in these sums can be substituted
by a large positive integer such as 50 for most practical purposes.

4.1 Moments

Henceforth,Y+1)a denotes the ex@ distribution with power parametés + 1) a Therth
moment ofX, say' , followsfrom (9) as

pr=E(X")=) wi E (}}?ﬁ;+11a) :
k=0

Thenth central moment oX, say’ , is given by

- IER. n n—r r
b = E(X —p) =Z(r){—#) E(X7)
=0
 — n—r n Hn—r rr
= ;kz—u{_l) Wk (r) p "V E ()‘f.‘c—‘l]a) :
The cumulantsi) of X follow recursively from

n—1 n—1
I T
Kn = My g(?._])h’"“ﬂ—*"
whereQ * ,Q S O o * | etc. The measures of skewness and
kurtosis can be calculated from the ordinamyments using weknown relationships

4.2 Generating function

Here, we provide two formulae for the migk (t) = E (¢ %) of X. Clearly, the first one can
be derived from equation (9) as

My (t Zu-a Mg+1)a (2),
k=0
where My+1a (t) is the mgf of Yu:1a. Hence,Mx (t) can be determined from the et
generating function.
A second formula foMx (t) follows from (9) as

My (¢ Zw Tt k),

wherez ®E  _ Qo®0 6 0 ‘Q éand Qs (u) is the gf corresporidg to O Mg
i.e.,QH (U)="0 0OIVo.

4.3 Incomplete moments
The main applications of tHerst incomplete moment refén the mean deviations and the
Bonferroni and Lorenz curvesThese curves are very useful in economics, reliability,
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demography, insurance and medicine. The sth incomplete moememt,, of X can be
expressed from (9) as

t oo t
0= f@@=Yu[ Fraee 00
—oe k=0 —oo

The mean deviations about the mean %8 t S and about the median
%8B - s of Xare given by C1&t ¢z t and i ¢3 - ,respectively,
wheref %8 ,- -AAE®AT 1 m® isthe median&t is easily evaluated from (5)
and3 Qs the first incomplete moment given by (10) wdh p.

Now, we provide two ways to determipeandy . First, a general equation fgr O can
be derived from (10) as

o
7 (E) = z;,;,'k; Jik+13a (E),

k=0

where* o . @ @A @ the first incomplete moment of the egudistribution
A second general formula fgr O is given by

=
o1 (t) =) wive(t),
k=0

wherez O E pA 1 0O A @an be computed numerically.

These equations f@g O can be applied to construct Bonferroni and Lorenz curves
defined for a given probability by" A 3 N¥aAt and A 3 N7t , respectively,
wheret %8 andN 1 A isthe gf ofX atA.

4.4  Entropies
The Rényi entropy of a random variabl represents a measure of variatioh the
uncertainty. The Rényi entropy is defined by

]0g [ flz a‘x) >0and §+1.

]og [ fi x‘ﬂ d.,r) > 0and § 1.
Usingthe pdf (6), we can write
Fla) = (ab)h(x)® {1 +2—22H (2)}*

« {H(z)[1+A- ,\H{ﬂ:}ﬁ«_l_,
[ ey #o—1)
x {1 — [(14+ 1) H () —AH:_IJ-] }

Applying the power series (7) to the last term, we obtain

Ip(X) =

Using the pdf (6), we can write

I X)=
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= C(B(b—1) \
ff-E]g _ {M]EZ(_“;( Lk ')QHIEG(_-??JM+N“_]"
k=0

oo

f <+ 0ia—1}

= th g[x‘_lEGi,r]M Ola—1)
k=0

Then, the Rényi entropy of the KWG family is given by

{ka‘/‘ g .I} Cf 1nk—ﬁ'fc¢—1_:d‘r}_

my = (— (ab} ( [bk_ 1]).

The—entropy, saHq«(X), can be obtained, f¢r>0,[ 1, as

1 = o 8o
Hg(_X):H_]log{]—ka/ gf_m)eG{:r] k-+6( ”d;r}_
k=0 —

The Shannon entropy of a randeariableX, say Sl, is diéned by
YOO aé'€Qh
which follows by taking the limit ofgl(X) as tends to 1

IX)=

where

4.5 Order statistics

Order statistics make their appearance in many areas of statisticgl dinelopractice. Let
X1, é € ,b¥arandom sample from the KNG family The pdf ofXi.n can be written as

fin (@) = g E Zm (*7)F @

where B( ; ) is the beta function. Based on equatlon (5), we have

P =3 (1) (j+§— 1) f1-[0+n HE) - )\H(x)2]a}fb_

=0
(12)
Using (6) and (12) and after a power series expansion, we can write

ff ‘?_H 1(l Z ki T(k+1)a (1'), “3)

= (=) TFab i1\ (b(1+1) =1
i =D um)a( z )( K )

Substituting (13) in equation (11), the pdf)()'fn can be expressed as
oo n—1 J ( - )
fin () ZZB{an—a—kHd“fTH”a(‘)"

k=0 j=0
wheren (k+1)a(x) is the expG densitywith power parameter (k + 1) a.

where
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Then, the density function of the KWG order statistics is a mixture of ety densities.
Based on the last equation, we note that the properties of Xi:n follow from those properties of
Y (k+1)a For example, the momentsXin can be expressed as

ii j (ﬂ T) dk_‘,l E (Y'fk+1]a} - (1‘1)
prre D n—1+1)
The L-moments are analogous to the ordinary moments but can be estimated by linear
combinations of order statistics. They exist whenever the mean of the distribution exists, even
though some higher moments may not exist, amedrelatively robust to the efits of outliers.
Based upon the moments in equation (14), we can derive exgkpiessions for the -L
moments of X as in.nite weighted | iTGerdar combi nat
statistics.
We have

r—1

Ar = %Z(_l}d (T;1)E(ﬂvr—d:r)~ r=1

d=0
The first four Lmoments are givenby: Od&bgq B -Odby &g A -0dyg

CQ)(L (A)(L and} —O(A)(i O-wda O-wda 00(1
One simply can obtain tHe@for X from (14)withq 1

4.6 Probability weighted moments
The(s, rNth PWM of X following the KwTG distribution, sayw,, is formally defned by

p.,=E{X°F(X)'} = / 2°f (z) F(X)" dz.

From equation (13), we can write

Psr = Z bk.'rf IS:T:[‘k+‘l','c( {,IC) = Z bk.?‘ E [:}-_[\k+‘l}a) 1
k=0 k=0

— o0

= (D) T ab (7 (B(I+1) —1
ver =3 G ()Y,

=0

where

5. Special models

In this section, we provide four special models of the-K@ family, namely, KwT
exponential, KwT power, KwT log logistic and KwT Burr X distrikutions. These sutmodels
generalize important existing distributions in the literature. Section 4 is usedaio sbme
properties of the KWl E distribuion.

5.1 The Kw-TE distribution
The exponential distribution with scale parameter > 0 has pdf and cdf given by
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hx)=1Q (forx>0)andHX) =1-Q ,respectively. Then, the KWE density function
reduces to

fle) = aabe™™ {1 -A+22e™**}{(1 —e72%) [1 4+ e™**]}
x [1={(1—e) [1+2e72=] 17"

The KwTE distribution reduces to the transted exponential (TE) distrition when a=b
= 1. Also, when = 0, it reduces to the Kavdistribution. Figure 1 displays some possible
shapes of the density and hazard rate functions of thishdistm. Figure 1 reveals that the pdf
of the KWTE can be reversedshape or right skewed. The hrf can be decreasing (DFR),
increasing (IFR) or constant (CFR) failure rate.

Next, some properties of the KVE are obtained by using the general propertissudised
in Section 4.

(1) Moments: From Section 4.1, thiln moment of KWTE distribution can be written as
(=1)"

)\?"

a—1

=

we = E(XT)=)7

k=0

(k—l—”mk

87‘
xa—?B [’(k:"—‘l]’p"“l — {k:—‘“l)ﬂ.) p=(k+1)a-
P
Thenth central moment of the K\E model is given by
noooo {_])n (?1) e
n = = (I[L‘—l-] (i .rln r]LL.'
H ;go X ) ) ap k

dp”
(2) Moment generating function: From Section 4.2, the mgf forKavcan be expressed as

X

B((k+1),p+1—(k+1)a)|p=(ks1)a-

el

t" (1) (k+ 1) aT (k + 1) wy
My () =
x (t) Z e T ((k+1)a—h)(h+1)""

7T(r+1), r> -1
k7, h=0

A second formula for MX (t) of the KvFE model (fort < &) is

= t
My (t) = Zojk (k+1)aB ('l — X,(k—l— 'l]a) i
k=0
(3) Incomplete moments: From Section 4.3, the sth incomplete moment of Hi&Kmnodel is
given by

=]

(=1)" (k +1)aT ((k+1) a) wi A\ 8
o, (t) = - SR vls+1, G .

= i (A1) T (k+1)a—h)

wherer(a,z)= ® 'Q Qs the incomplete gamma function.

(4) Entropies: From Section 4.4, the Rényi entropy of the Kamodel isgiven by
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1 oo
I (X) = 1—48 log (Zk_f_j__szn mMJJ) '

-21')\3'+j+29—1 (ab)ﬁ (_1)k+i+j—{ (3) <(b _ 1) 9)
(641)(1+ A}i+j—c¢fk—9) z k
X(ak—!— (_a—'l)ﬁ) (ak‘—l—ﬁ(a— 1]—0—'&—!—,})
J l '
The Shannon entropy of the KVE distribution bllows by taking the limit ofl¢(X)
whend goes to 1.

(5) Order statistics: From Section 4.5, the moments of order stafistite KwTE
distribution can be written as

where

Mk ji

= (=179 (k+1)a (n—i)
E(X]) dy, .
kzog AMB(,n—a1+1) ]
q

8
xg—?ﬂB{(_kH) pH1—(k+1)a)|p=(k+1)a-

(6) Probability weighted moments: From Section 4.6 we have

5

{k+1}abh8 .

B((k+1),p+1—(k+1)a)|p=(k+1)a-

5.2 The Kw-T power (Kw-TPo) distribution
The power (Po) distribution with shape paramgterO and scale parameter 0 has pdf

and cdf given bh (X) =j1 @ (forO<x< )andH(X)=T ® , respectively. Then, the
Kw-TPo density is given by

Flz) = abaBz® {1+ A—2X(82)"H{(Bz)[1 +A— A(Bx)*]}* "
x {1—[(Bz)" [1+A—A(B2)°]"}" "
This distribution reduces to the transmuted power (Tistjibution if a = b = 1. Foe-= 0, we
obtain the KwPo distribution. Foy = 1, it follows as a speciatase the uniform distribution
defined on the interval (0, 1). Figure 2 displays plots of the density and hazard rate functions
for the KwTPo distribution for selected parameter values. These plots reveal that the pdf of the

Kw-TPo can be aeversed shape, khape, concave up or concave down. The hrf can be
decreasing (DFR), increasing (IFR) or bathtub (BT) failure rate shapes.

5.3 The Kw-T log logistic (Kw-TLL) distribution
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The loglogistic (LL) distribution with positive parameteysand; haspdf and cdf given

byh(x) =] p - (forx>0andH(X)=p p - , respectively. Then,
the pdf of the KwTLL distribution is giverby

fl) = abfaPf 2 [1+ (g)s] _2{1 _ [1 + (E)S}_]}H -
x {1 - {1 —2 [1 + (g)o}q} } {1 +A [1 + (g)a} _1}b_1
- @T ] f-pr7

The KwTLL model reduces to the transmuted-logistic (TLL) distribution when a = b = 1.

For &= 0, we obtain the Kvi.L model. Plots of the density and hazard rate functions of the
Kw-TLL distribution are displayed in Figure 3 for some parameter values. These plots show
that the pdf of the KWI'LL model can be reversedshape or concave down. The can be
decreasing (DFR), increasing (IFR) or upside down bathtub (UBT) failure rate shapes.

5.4 The Kw-T Burr X (Kw -TBrX) distribution
The Burr X (also known as generalized Raleigh) distribution with positive parameters

andr has pdf and cdf givebhy h (X) =¢ | aQ p Q (for x > 0) andH (X)
=p Q , respectively. Then, the pdf of the KilBrX distribution reduces to
f(z) = 2abapize (2 {1 FA—2) [1 _ e—lﬁxf] }

aqaa—1 L2 a—1
X [1 — e~ (82) ] {1+A—A[l _e—(82) ] }
- ) 2o aa bh—1
x{‘l—(1+)x—)\{l—e_f-5‘"”] ) [l_e-iﬁxi] } _

The KwTBrX distribution includes the transmuted Burr X (TBrX) distribution when a = b = 1.

Fora= 0, we obtain the KvBrX distribution. The plots ifrigure 4 show some possible shapes

of the density and hazard rate functions of the KBvX distribution. Figure 4 shows that the

pdf of the KwT Br X mod e | i s very I ehapehHfskewed dr rigptan be r e\
skewed. The hrf can be decreasing (DFR), increasing (IFR) or bathtub (BT) failure rate shapes.
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Figure 1:(a) The KwTE density plots. (b) The KwTE hrf plots
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Figure 2:(a) Plots of the KwTPo pdf. (b) Plots of the KwTPo hrf.

6. Maximum likelihood estimation

Several approaches for parameter estimation were proposed in thdulieetat the
maximum likelihood method is the most commonly employed. The maximum likelihood
estimators (MLEs) enjoy desirable properties ani
intervals and also in test statistics. The-mal approximation for these @sttors in large
sample theory is easily handled either analytically or numerically.
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Figure3: (a) The KwTLL density plots. (b) The KwTLL hrf plots
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Figure 4:(a) The KwTBrX density plots. (b) The Kw TBrX hrf plots

So, we determine the MEs of the parameters of the new family of disttions from
complee samples only. Leki, ...x,.be a random sample fromethKw-TG family with

parameter:a,b andko. Let—= d’frﬂLF%é 4 be the p 1) parameter vector. Then, the dog
likelihood function foq , sayl=1([') , is given by

14

nloga+ nlogb+ Z log h (zi; @) + Z log p;

i—=1 i—1
Ha—1)> logg +(b—1)Y log(1—ai), (15)
i—=1 i—=1

wherepi =1 +02 & (xi; %9,z = 1 +8-aH (X; %0) andqgi =z H (X; %o).
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Equation (15) can be maximized either directly by using the R (optimtiomg SAS
(PROC NLMIXED) or Ox program (sulputine MaxBFGS) or by solvinghe nonlinear
likelihood equations obtained by dinerentiating (15).

The score vector components, §ay— —  —h—h—h— "YRYRYRY  are
given by

bl b
T '
L-;:--E log g;. U.,=—+§ log (1 —g;).
P 2q S 2(1—g:)

n {H (i b)) — H (x;; q{:]z}

n _ 9 o b}
Uy = Z—h _Hi'r“"”’]ﬂn—ﬂz
i=1

Di h

i=1

y , / 2]
noa Hixi ) — H [z )
-1y { S

1

1 —g;

and

i H (x:: ) {z: — A\H (zi:9)}
q;

+(a—1)

i=l]
- — H'(z;¢) {z: — \H (25, ¢)}
—(b—-1) - .
’ ; (1—a)
whereE @ T @M FFE M and( @M K M 7
Setting the nonlinear system of equatidhs= Uy = Ua = U. k= 0 and soling them
simultaneously yields the MLE= ( (ftHi ko ) of —= G¥GR_%d " These equations cannot
be solved analyticallyand statistical software can lsed to solve them numerically using

iteraive methods such as the NewtBaphson type algorithms. For interval estim@atof the
model parameters, wequire the observed infmation matrix

U, aa U ab U, al I (’qu
[Jba (]bb l—]b,\ | Jg‘l’
JO@)=—1 J. Uwp Usn U,Iqb
Ve Jop Use Usg

whose elements are given in appendix A.

Under standard regularity conditions when©nH, the distribution of—can be
approximated by a multivariate normidh(0; J — ) distribution to construct approximate
confidence intervals for thparameters. Here,-J is the total observed information matrix
evaluated at— The method of the resampling bootstrap can be used for correcting the biases of
the MLEs of themodel parameters. Interval estimates may also be obtained using the bootstrap
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percentile method. Likelihood ratio tests can be performed for the proposed family of
distributions in the usual way.

7. Applications

In this section, we illustrate the applicability of the K& family to real data sets. We
focus on the KWTE distributionpresented in Section 5. The method of maximum likelihood is
used to estimate the model parameters. This secH
subsection is devoted to study the performance of the MLEs for estimating thEEKw
parameters using dhte Carlo simulation for dicerent parameter values and various sample
sizes. In the second subsection, two data sets are used to prove empirically the applicability of
the KwTE distribution.

7.1 Monte Carlo simulation

A simulation study is conducted iarder to test the performance of the MLEs for
estimating the KWT E parameters. We consider three dinerent sets of parameters: I: a = 3, b = 2,
_=0541=2,ta=2,b=3_=08,4=3andlll:a=1,b=5=-0.7,4 = 2. For each
parameter combination, we simulate data from theT®&wmodel with direrent sample sizes, n
= 50, n = 100, n = 150, n = 200, and calculate the MLEs by maximizing tH&dtigood
equation in (15), wherb (X) =1'Q . The process is repeat 1; 000 times and for each set of
parameters and each sample size, the average bias (estituek and the standard deviation
are evaluated. The results are presented in Table 2. From the results in Table 2, the biases and
standard deviations decreases the sample size increases. Furthermdargnd| are
overestimated anBlis underestimated for the three sets of the parameters.

Whilst_is underestimated for sets | and Il and overestimated for group lll. In general, Table 2
indicates that the MLIhethod performs quite good for estimating the-Ki parameters.

7.2 Real data

In this section, the KW E model is fitted to two data sets and compared with other existing
di stributions. Il n or de rbutibns, we consjglex vagsuntedseres ...t s o f t
of goodnes®f-fit including the Akaike information criterion (AIC), Bayesian information
criterion (BIC), HannarQuinn information criterion (HQIC), consistent Akaike information
criterion(CAIC), maximized logikelihood under the model-2/1y AndersorDarling (A*) and
CramérVon Mises (W*) statistics. The measures of goodioddit measures are given by
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Table 2: Bias and standard deviation for yhe parameter estimates

) Actual values Biaz
(Standard deviation)
a b A a a b A a
0 3 2 05 2 0.7149 -0.3479  -0.1002 0.8820
(1.2519) (1.2811) (0.4187) (1.1529)
100 3 2 05 2 0.4484 -0.3413  -0.0952 0.7944
(0.8483) (1.0106) (0.3439) (1.0066)
10 3 2 03 2 0.2437 -0.1512 -0.0305 0.6731
(0.7962) (0.9632) (0.3413) (1.0083)
200003 2 035 2 01141 -0.1090 -0.0135 0.4657
(0.6740) (0.7185) (0.3137) (0.6734)
20 2 3 08 3 0.0676 -0.1147  -0.2365 1.1136
(0.3050) (1.4579) (0.3230) (1.3991)
100 2 3 08 3 0.0722 -0.1105 -0.0831 0.7971
(0.2534) (1.3926) (0.3128) (1.3679)
10 2 3 08 3 0.0585 -0.0559 -0.0430 0.4021
(0.2513) (1.2794) (0.2564) (1.3183)
200 2 3 08 3 00024 -0.0611 -0.0014 0.16350
(0.2149) (1.1083) (0.2547) (0.9223)
a0 1 5 -07 2 01377 -1.6994 0.2057 1.2047
(0.3065) (2.1832) (0.4187) (1.4972)
1m0 1 5 -07 2 0.1323 -1.6320 0.1659 1.0894
(0.3052) (1.6012) (0.3789) (1.2530)
130 1 5 -0.7 2 0.0518 -0.9354 0.0871 0.8195
(0.2087) (1.1508) (0.2750) (1.0414)
200001 &5 -07 2 0.0454 -0.5060 0.0656 0.3960
(0.1614) (0.7658) (0.1953) (0.3134)
l)Y# ¢bcH )# ¢JbebIll C

(1)# ¢JbcDillidcH! ) #¢gb bl D p

9
A'=| —
(_-1_.}.12 +

1
Ww* = —
(Qn *

in

and

3 [
——l-l) 'n+;2(23—1)]08[/’%(_1—2’-71—;—1)]
=

>

j=1

l){"

B AR
2n 120

respectively, wherg = F (y; ), p is the number of parameters, n is the sample size and the
valuesL]Bzare the ordered observations. The smaller these statisticthe better thetfis.
Upper tail percentiles of the asymptotistributions of these goodnes§fit statistics were
tabulated in Nichols and Padgett (2006).



Ahmed Z. Aify!, Gauss M. Cordeiy Haitham M. Yousof, Ayman Alzaatrefy Zohdy M. Nofal 261

Data set I: Failure times of 84 aircraft windshield

The first data set was studied by Murthy et al. (2004), which repngs failure times for a
particular whdshield device. The windshield on a large aircraft is a complex piece of
equipment, comprised basically of several layers of material, including a very strong outer skin
with a heated layer just beneath it, all laminated under high temperature andepréasures
of these items are not structural failures. Instead, they typically involve damage or-delami
nation of the nosstructural outer ply or failure of the heating system. These failures do not
result in damage to the aircraft but do result in rept@nt of the windshield. For further
details, see, for example, Murthy et al. (2004). The data consist of 84 observations. These data

were previously studied by Cordeiro et al. (20114
(McW), beta Weibull (BW), Kuraraswamy Weibull (KwV) and Weibull distributions. Here,
we shall c o mp ar €E mddel with.otlser noodlels:tthe & c\WK(@ordeiro et al.,
2014) , gamma Wei bul | (GW) (Provost et al ., 2011
Weibull (MBW) (Khan,206) , transmuted modi ..ed Wei bul I ( TMW)
and transmuted exponestied generalized Weibull (TExGW) (Yousof et al., 2015)
di stributions, whose pdf’'s (for x > 0) are given

McW: f(z) = B-f;;‘;} zf~1e~(az)" [1 — e—fawl”’r 1

soen b1
x{l—[1—e_[m’]] } :
CGW: f(z) = —1'_384_?:{-6);3:-34'7'_1 e T

Bal . 8 N a—1
BW- f{I) — sz.b}xﬁ—]e—bla.ﬂ |:-l _ g (ax) ] -

& —5 Y- V- !
MBW: f (z) = £17a"8-1e0(2) {1 _e(2) }

<{1-(1-9) [1 _e—b(%)“"} }_“_*’;
TMW: f () = (a_+ _1{_335—1) e—ms——,-a;s (] — A+ QAe_Q‘”—”.--re)

. .8 ) sb—1
TExGW: f (z) = abBalzf—le—alax) [1 — ealaz) }

s b
x{1+A—2A[1 _ e—alaz) ] }

The parameters of the above densities are all positive real numbers except for the TMW
and TEXGW distributions for whiclg_s p.

Data set Il: Breaking stress of carbon fibres
The second real data set consists of 100 observations from Nichols and Pa@gti§20
breaking stress of carborbfes (in Gba). Here, we use these data to compare thEEKwodel
with other models, namely: Weibull Fréch@V/Fr) (Afify et al., 2016), TLL, exponentiated
transmutedgeneralized Rayleigh (ETGR) (4§ et al. 2015), tramauted MashallOlkin
Fréchet (TMOFr) (Affy et al., 2015), transmuted Fréchet (TFr) (Mahmoud and Mandouh, 2013)
and MarshalOl ki n Fr échet ( MOFr) (Krishna »t0) al , 2013)
given by
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)_s] —b—1 e—a [e_(%)e -1}

ETGR: f (_1,} = QQO'.Ser—[_Sx}: {1 4+ A—2) |:] . e_[_3$)::| }

L L ad—1 e 0—1
x [1—e_"6x"_} {1+,\—/\[l—e—l3$" } _;

ulo

WFr: f(z) = abBalz—0-1e=0(2)’ [1 — e

g8 p—(5+1) =

TMOFr: f(z) = 2

TFr: f'[\-r] - -:E (l)'3+1 e_{i'}'s [‘l +/\_ 2/\6_(§)5] :.

x

MOFr: f(z) =25 ()" e (2) [a +(1- o,-}e—(%)““’] ’

The parameters of the above densities @l positive real numbers except for the ETGR
and TFr distributions for whichs p.

Tables 3 and 4 list the numerical values of 27, AIC, BIC, HQIC, CAIC, W and A for the
models fitted to both data sets. The MLEs and their eepending standard errorsn(i
parentheses) of the model parametersgaren in Tables 5 and 6. Thesgures are obtained
using the MATHCAD PROGRAM.

In Table 3, we compare thetdiof the KWTE model with the McW, GW, BWMBW,
TMW and TExGW models. Thedures in this tabléendicate that the KW E model has the
lowest values for all goodnesé-fit statistics (for failure times of Airaft Windshield data)
among the fied models. So, the K\&WE model could be chosen as the bestehdd Table 4,
we compare the th of the KwTE, WFr, ETGR, TLL, TMOFr, TFr and MOFr models. It is
shown that the KWE model has the loest values for all goodnes$-fit statistics (for
breaking stress of carbon fibres data) among @didfimodels. So, the KWE model can be
chosen as the best owl.

Table 3: Goodnessf-fit statistics for failure times of aircraft windshield data

Model —2¢ AIc BIC  HQIC CAIC A w*

Kw-TE  257.396 265.396 275.32 269.505 266.103 0.3485 0.0578
McW 273.599 283.599 296.053 285.785 284669 1.5906 0.1956
GW T7.721 283.721 291.013 2§6.653 284.021 1.9489 0.2553
BW 207.028 305.028 314751 308.937 305534 32197 0.4652

MBW 200573 309.973 321.727 314459 310342 32606 0.4717
TMW 333.893 J341.893 351.616 345801 342399 11.2047 0.8065
TExGW 352594 362094 374748 367458 363363 62332 1.0079

Table4: Goodnesf-fit statistics forbreaking stresof carbon fibres data
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Model —2 Arc BIC  HQIC CAIC Ar we

Kw-TE 28644 29444 304561 293.657 294861 0.3402 0.0536
WEr 286.55 29455 30497 298767 294971 0.35156 0.05451
ETGR  292.046 300.046 310.5 304263 300.467 0.7413  0.1419
TLL 2949  300.573 305.689 304.036 301.123 0.9643  0.1539
TMOFr 301973 309.973 320393 31419 310394 1.2677 0.2376
TFr 344475 350475 355.20 353.635 350.725 3.1782  0.5559
MOFr  345.326 351.326 359.143 354491 351.578 3.3825  0.5927

Table5: MLEs and their standard errors (in parentheses) for data set |

Model Estimates
_ a= 0.0965 A= —0.8971 a=1.6346
R LE (0.053) (0.129) (0.35)
b= 65.0082
(76.536)
W a=1.9401 '5'_= 0.306 a= 17.686
(1.011) (0.043) (6.222)
b= 33.6359 7= 16.7211
(19.994) (9.622)
, a=10.1502 3= 0.1632 a= 37.4167
MBW (15.697) (0.019) (14.063)
b= 19.3559 E=2.0043
(10.019) (0.662)
s a= 4.2567 3= 0.1532 A= 0.0978
TExGH (33.401) (0.017) (0.609)
a= 52313 b= 1173.3277
(9.792) (129.165)
BW a= 1.36 3= 0.2951 a= 34.1802
(1.002) (0.06) (14.838)
b= 11.4056
(6.73)
, a= 02722 =1 A= 0.4685
T (0.014) (5.185 % 107%) (0.165)
F=45012 x 10°°
(1.927 x 107%)
cw a=2.376973 3= 0.545004 7= 3.534401
(0.378) (5.296 x 107%) (0.665)
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Figure 7:The QQ plots of the KW E model for data setgleft panel) andor data setslI(right panel)

Table6: MLEs and their standard errors (in parentheses) for data set |l

Model Estimates
kwTp 0= 0.0955 A= 0.5369 a= 3.3634 b= 37.2397
(0.362) (7.052) (0.916) (29.423)
WE a= 0.6942 5= 06178 a= 0.0947 b= 3.5178
! (0.363) (0.284) (0.456) (2.942)
= — e = TE2 = E
crom 6=0123 5= 0.3041 8 - 41.3782 A=0.931
(0.088) (0.034) (50.268) (0.069)
3= 3.3041 = 0.6496 a= 101923 A= 0.2936
TMOF ! -
' (0.206) (0.068) (47.625) (0.27)
T 3= 1.7435 7= 1.9315 A= 0.0519
(0.076) (0.097) (0.195)
TLL o= 2.4602 3=4011 A= —0.0006
(0.6484) (0.333) (1.043)
a= 0.5933 5=1.5796 A= 2.3066
MOFr (0.3001) (0.16) (0.489)

It is clear from Tables 3 and 4 thaetKkw-TE model provide the bestdito both d&a sets.
The histograms of thetfed distributions to data sets | and Il are displayed in Figure 5. The
plots support the results obtained from Tables 3damigures 6 and 7 display thé&déd cdf and
the QQ plots for the KWE model to the two data sets. It is evident from theses tlat the
Kw-TE provides good fito the two data sets.

8. Conclusions
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There is a great interest among statisticians and practitioners in the past decade to generate
new extended families from classic ones. We present a nemdfaswamy transmute@
(Kw-TG) family of distributions, which extends the transmuted family by adding two extra
shape parameters. Many wkfiown distributions emerge as special cases of theT&w
family by using special pammeter values. The mathematical properties of the new family
including explicit expansions for the ordinary and incomplete moments, generating function,
mean deviations, entropies, order statistics and probability weighted moments -aigegdro
The model parameters are estimated by the maximum likelihood methotheardbserved
information matrix is determined. It is shown, by means of two real data sets, that special cases
oftheKwT G family can give better . .tkeownfdmdies. ot her mo
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Appendix A:

Theelements of the observed information matrix are:
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